查看原文
其他

OpenCV实现年龄与性别预测

gloomyfish OpenCV学堂 2020-02-04

点击上方蓝字关注我们

关注:OpenCV干货与教程第一时间送达!

欢迎星标或者置顶【OpenCV学堂】

概述

前面我写了很多篇关于OpenCV DNN应用相关的文章,这里再来一篇文章,用OpenCV DNN实现一个很有趣好玩的例子,基于Caffe的预训练模型实现年龄与性别预测,这个在很多展会上都有展示,OpenCV DNN实现这里非常简洁明了,总共不到100行的代码。下面就来说一下怎么实现的,首先下载两个Caffe的预训练模型:


Gender Net and Age Net

https://www.dropbox.com/s/iyv483wz7ztr9gh/gender_net.caffemodel?dl=0"

https://www.dropbox.com/s/xfb20y596869vbb/age_net.caffemodel?dl=0"

上述两个模型一个是预测性别的,一个是预测年龄的,性别预测返回的是一个二分类结果

Male
Female

年龄预测返回的是8个年龄的阶段!

'(0-2)'
'(4-6)'
'(8-12)'
'(15-20)'
'(25-32)'
'(38-43)'
'(48-53)'
'(60-100)'

人脸检测是基于OPenCV DNN模块自带的残差网络的人脸检测算法模型!非常的强大与好用!

实现步骤

完整的实现步骤需要如下几步:

  1. 预先加载三个网络模型

  2. 打开摄像头视频流/加载图像

  3. 对每一帧进行人脸检测

    - 对检测到的人脸进行性别与年龄预测

    - 解析预测结果

    - 显示结果


代码实现详解

加载模型

MODEL_MEAN_VALUES = (78.426337760387.7689143744114.895847746)
ageList = ['(0-2)''(4-6)''(8-12)''(15-20)''(25-32)''(38-43)''(48-53)''(60-100)']
genderList = ['Male''Female']

# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)


人脸检测

frameOpencvDnn = frame.copy()
    frameHeight = frameOpencvDnn.shape[0]
    frameWidth = frameOpencvDnn.shape[1]
    blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300300), [104117123], TrueFalse)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    for i in range(detections.shape[2]):
        confidence = detections[00, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[00, i, 3] * frameWidth)
            y1 = int(detections[00, i, 4] * frameHeight)
            x2 = int(detections[00, i, 5] * frameWidth)
            y2 = int(detections[00, i, 6] * frameHeight)
            bboxes.append([x1, y1, x2, y2])
            cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (02550), int(round(frameHeight/150)), 8)


性别与年龄预测

    for bbox in bboxes:
        # print(bbox)
        face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]

        blob = cv.dnn.blobFromImage(face, 1.0, (227227), MODEL_MEAN_VALUES, swapRB=False)
        genderNet.setInput(blob)
        genderPreds = genderNet.forward()
        gender = genderList[genderPreds[0].argmax()]
        # print("Gender Output : {}".format(genderPreds))
        print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))

        ageNet.setInput(blob)
        agePreds = ageNet.forward()
        age = ageList[agePreds[0].argmax()]
        print("Age Output : {}".format(agePreds))
        print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))

        label = "{},{}".format(gender, age)
        cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0255255), 2, cv.LINE_AA)
        cv.imshow("Age Gender Demo", frameFace)
    print("time : {:.3f} ms".format(time.time() - t))


运行效果(看到这个预测,我又相信技术了!@_@):

完整源代码:

import cv2 as cv
import time


def getFaceBox(net, frame, conf_threshold=0.7):
    frameOpencvDnn = frame.copy()
    frameHeight = frameOpencvDnn.shape[0]
    frameWidth = frameOpencvDnn.shape[1]
    blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300300), [104117123], True, False)

    net.setInput(blob)
    detections = net.forward()
    bboxes = []
    for i in range(detections.shape[2]):
        confidence = detections[00, i, 2]
        if confidence > conf_threshold:
            x1 = int(detections[00, i, 3] * frameWidth)
            y1 = int(detections[00, i, 4] * frameHeight)
            x2 = int(detections[00, i, 5] * frameWidth)
            y2 = int(detections[00, i, 6] * frameHeight)
            bboxes.append([x1, y1, x2, y2])
            cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (02550), int(round(frameHeight/150)), 8)
    return frameOpencvDnn, bboxes


faceProto = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector.pbtxt"
faceModel = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector_uint8.pb"

ageProto = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/age_deploy.prototxt"
ageModel = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/age_net.caffemodel"

genderProto = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/gender_deploy.prototxt"
genderModel = "D:/projects/opencv_tutorial/data/models/cnn_age_gender_models/gender_net.caffemodel"

MODEL_MEAN_VALUES = (78.426337760387.7689143744114.895847746)
ageList = ['(0-2)''(4-6)''(8-12)''(15-20)''(25-32)''(38-43)''(48-53)''(60-100)']
genderList = ['Male''Female']

# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)

# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(0)
padding = 20
while cv.waitKey(1) < 0:
    # Read frame
    t = time.time()
    hasFrame, frame = cap.read()
    frame = cv.flip(frame, 1)
    if not hasFrame:
        cv.waitKey()
        break

    frameFace, bboxes = getFaceBox(faceNet, frame)
    if not bboxes:
        print("No face Detected, Checking next frame")
        continue

    for bbox in bboxes:
        # print(bbox)
        face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]

        blob = cv.dnn.blobFromImage(face, 1.0, (227227), MODEL_MEAN_VALUES, swapRB=False)
        genderNet.setInput(blob)
        genderPreds = genderNet.forward()
        gender = genderList[genderPreds[0].argmax()]
        # print("Gender Output : {}".format(genderPreds))
        print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))

        ageNet.setInput(blob)
        agePreds = ageNet.forward()
        age = ageList[agePreds[0].argmax()]
        print("Age Output : {}".format(agePreds))
        print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))

        label = "{},{}".format(gender, age)
        cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0255255), 2, cv.LINE_AA)
        cv.imshow("Age Gender Demo", frameFace)
    print("time : {:.3f} ms".format(time.time() - t))


源码与模型下载地址

https://github.com/gloomyfish1998/opencv_tutorial


往期回顾

OpenCV4.0 灰度图像彩色化

OpenCV4.0如何跑YOLOv3对象检测模型

对象检测网络中的NMS算法详解

深度优化局部拉普拉斯金字塔滤波器。

EAST场景文字检测模型使用

OpenCV调用Faster-RCNN对象检测网络

使用OpenVINO ToolKit 实时推断

欢迎扫码加入【OpenCV研习社】

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存